

Some insights from long, heavy, freight trains

Dave van der Meulen

European Rail Research Institute/Spoornet Interactive Seminar Farm Inn, Pretoria 6-7 September 1999

Structure of this presentation

- 1 A selected South African heavy haul chronology
- 2 A worldview on transport modes
- 3 Some insights from long, heavy, freight trains
- 4 Potential for alignment and cooperation

A selected South African heavy haul chronology

1976: Sishen-Saldanha in service

Line profile: 0.4% ascending 1.0% descending

26 tonnes/axle, 202 cars, 21 000 tonnes

Ermelo-Richards Bay in service

34-696

1976:

20 tonnes/axle, 80 cars, 6 400 tonnes, 1.52% ascending

Location of lines

Sishen-Saldanha

Ermelo-Richards Bay

1978: Ermelo-Richards Bay Driving is a cognitive task

160 cars, 12 800 tonnes

1978: Ermelo-Richards Bay Driving is a cognitive task

Head

end

160 cars, 12 800 tonnes

1985-9: Ermelo-Richards Bay Axle load increased to 26 tonnes...

New CCL⁻⁵ cars, compared to old CCL⁻³ cars

1985-9: Ermelo-Richards Bay . ascending grades eased to 0.63%

New CCL⁻⁵ cars, compared to old CCL⁻³ cars

1988: A 200-car coal train

26 tonnes/axle, 20800 tonnes, 4 x Class 11E leading ...

... with manned helper locomotives

... 26 tonnes/axle, 20800 tonnes, 6 x Class 34 helping

1989: Ermelo-Richards Bay 200-car trains

Line profile: 0.625% ascending 1.52% descending

26 tonnes/axle, 20800 tonnes, 4 x Class 11E at head-end only

1983-93: Optimized sensory feedback Systemic relations

1983-93: Optimized sensory feedback Friction/dynamic braking balance

1983-93: Optimized sensory feedback Curves shaped for intuitive feel

< Speed >

1989: World record freight train

70 000 tonnes, 7300 meters, 660 cars, 861 km

1994: Full-motion driver training simulator

1994: Mercer Management Consulting benchmark Spoornet rated global cost/net tonne-km leader

1998: 300-car automatibility test train Segmented power & braking

1998: 300-car automatibility test train Segmented power & braking

300 cars, 34 300 tonnes, instrumentation & 2nd locomotive consist

1998: 300-car automatibility test train Segmented power & braking

300 cars, 34 300 tonnes, third locomotive consist

1998: Intelligent multiple-unit cable

Inter-locomotive equipment

1999: Pilot scheme Electronically-controlled pneumatic (ECP) braking & distributed power

A wireline controls train braking and remote locomotives

1999: Pilot scheme Electronically-controlled pneumatic (ECP) braking & distributed power

Car control device

1999: Pilot scheme Electronically-controlled pneumatic (ECP) braking & distributed power

Overlay electronic equipment

1999: New 30 tonne/axle car for Orex

686

CR (EO) A REAL PROPERTY AND A REAL PROPERTY A REAL PRO

Self-steering bogies

Where next?

- Several slides have presented incremental advances in recent years
- One can continue extending limits, but is that all there is?
- Same for high-speed intercity passenger?
- Where can railways find a quantum advance, a competitive breakthrough?

A worldview on transport modes ...

Three degrees of freedom of translation: Longitudinal, lateral, & vertical

High mobility, high cost

Three degrees of freedom of translation: Longitudinal, lateral, & vertical

High mobility, high cost

Single degree of freedom of translation: Longitudinal only

Settinit.
... constrains origin-destination versatility

Offers precise application of load, plus secure guidance

Single degree of freedom of translation: Longitudinal only

... constrains origin-destination versatility

Offers precise application of load, plus secure guidance

What compensatory trade-offs ...

What compensatory trade-offs ...

Heavy axle load

High speed

What compensatory trade-offs ...

... give competitive advantage ?

... give competitive advantage ?

... give competitive advantage ?

Heavy axle load

Light axle load

Low speed

High speed

Heavy axle load

Light axle load

Low speed

High speed

Heavy axle load

Light axle load

Heavy axle load

Heavy haul Intermodal **Incumbents** are being subsidized, hybridized, or annihilated Intercity

Light axle load

eaving three profitable quadrants

Heavy axle load

Rites of passage to railway profitability

Japan & Europe have reached the high speed quadrant

Several countries have reached the heavy axle load quadrant

Australia, Brazil, Canada, China, Russia, South Africa, and United States are members of the International Heavy Haul Association

United States, Canada, & Australia have

Some insights from long, heavy trains ...

Heavy haul can do

- High throughput capacity
- High asset utilization
 - High labour productivity
 - What can one leverage off this foundation?

Heavy haul exposes aspects of global role of railways

- Recognize what railways can do that other modes cannot do
- Recognize what railways cannot do well
- Regard the four quadrants as distinct modes, with own attributes and identity
- Recognize the presence of <u>divergent</u> and convergent drivers

Divergent drivers: Passenger & freight stress

-ligh speed intercity trains:

- Require wide curves

Tolerate steep gradients

– Prefer new, dedicated, infrastructure

-Run at relatively high frequency

Divergent drivers: Passenger & freight stress

leavy freight trains:

- Require easy gradients

Tolerate sharp curves

 Accept legacy infrastructure with upgraded permissible axle load

- Run at relatively low frequency

Divergent drivers: eavy haul/intermodal aspirations

leavy haul:

- Driven by global competition among sources

- Symbiotic relation with customers

- Length-of-haul under downward pressure

Divergent drivers: eavy haul/intermodal aspirations

ntermodal:

- Driven by competition <u>among modes</u>
- Medium-term opportunities on continental scale
- Long-term opportunities on intercontinental scale
 - l ength-of-haul on upward trend

lew challenges: Time-sensitive freight characteristics

- Postponed manufacture
- Outsourced manufacture
- Few or single global suppliers
- Value-added logistics

- Volatile demand
- Short transit time
- High value/low density goods
- Focused versus multi-functional parts

Jew challenges: Time-sensitive freight characteristics ...

- Postponed manufacture
- Outsourced manufacture
- Few or single global suppliers
- Value-added logistics

- Volatile demand
- Short transit time
- High value/low density goods
- Focused versus multi-functional parts

hanging relations among clients and service providers

- One to one (e.g. Sishen-Saldanha)
- Many to one (e.g. Ermelo-Richards Bay)
- Many to many (e.g. Freight Logistics Solutions)

hanging relations among clients and service providers

- One to one (e.g. Sishen-Saldanha)
- Many to one (e.g. Ermelo-Richards Bay)
- Many to many (e.g. Freight Logistics Solutions)

Define railway business: Intermodal or internodal?

Intermodal Ramp Cities

RRENT PRIMARY RAIL PARTNERS

Burlington Northern Southern Pacific Florida East Coast = Wisconsin Central **Canadian National** Norfolk Southern

Potential for alignment and cooperation

Convergent drivers: Alignment philosophies

- Only one, interoperable, technology set will ultimately dominate a transport mode
- Railway technologies are becoming global, and hence standardized
- There is virtue in global unification around graduated release, without compromising train length

Convergent drivers: Service scalability ...

Train sizing

Convergent drivers: Service scalability ...

Train sizing

Convergent drivers: .. could shape train technology

Convergent drivers: Impact of a common platform

- Reduces interchange and interoperability contention
- Encourages adoption of other harmonization requirements
- Simplifies understanding of a railway
- Complements information technology in facilitating seamless service

Convergent drivers: Intra-train communication

- A data network is a prerequisite
- Spoornet has an ECP braking & DP pilot scheme under way
- Related to European initiatives (EBAS, TCN, etc.)
- Information and bandwidth requirements are still open issues

Convergent drivers: utomation of long, heavy, trains

- Competing modes (air and sea) routinely automate long hauls
- Graduated release a prerequisite
- ECP braking has filled the missing link
- Spoornet's 300-wagon train demonstrated understanding of handling principles

he 79 miles-per-hour constraint

The existing intermodal mindset is predicated, among other, on a long-standing US statutory limit When will technology topple this constraint? Anticipate the role of transmission-based signaling!

A single-stack, high axle-load, ntercontinental, intermodal car*

A prognosis

- Heavy haul and high-speed intercity were killer apps for railways in the 20th century
- Railways have competitive advantages vis-à-vis other modes
- Opportunities for breakthrough exist
- Intermodal could be the killer app

... we need global cooperation to converge igh speed and heavy axle load

Spoornet, and others, have the heavy haul expertise Europe, and others, have the high speed expertise

Acritime and air transport are aur prov

There is a difference between knowing what needs to be done and knowing how to do it

